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ABSTRACT 11 

Inter-microbial and host–microbial interactions are thought to be critical for the functioning of the gut 12 

microbiome, but few tools are available to measure these interactions. Here, we report a method for 13 

unbiased spatial sampling of microbiome-host interactions in the gut at one micron resolution. This 14 

method combines enzymatic in situ polyadenylation of both bacterial and host RNA with spatial RNA-15 

sequencing. Application of this method in a mouse model of intestinal neoplasia revealed the 16 

biogeography of the mouse gut microbiome as function of location in the intestine, frequent strong inter-17 

microbial interactions at short length scales, shaping of local microbiome niches by the host, and tumor-18 

associated changes in the architecture of the host-microbiome interface. This method is compatible with 19 

broadly available commercial platforms for spatial RNA-sequencing, and can therefore be readily adopted 20 

to broadly study the role of short-range, bidirectional host-microbe interactions in microbiome health and 21 

disease. 22 

 23 

INTRODUCTION 24 

It has long been speculated that the gut microbiome functions as an organ system with tissue-like 25 

properties defined by dynamic interactions between microbial and host cells1,2. Yet, investigating the 26 

tissue-properties of the gut microbiome has been difficult due to a lack of adequate measurement tools3. 27 

While advances in imaging have enabled the study of the localization of specific microbes in the gut4, 28 

these methods are limited in multiplexity or fail to provide detailed information about host function and 29 

response3–7. Spatially resolved RNA-sequencing (RNA-seq), a more recent approach to studying gene 30 

expression in tissues, has been used to examine the cellular architecture of intestinal tissues in health 31 

and disease8–12. Nevertheless, characterizing the microbiome-host interface via spatial RNA-seq remains 32 

challenging due to constraints in spatial resolution and sensitivity to microbial RNA13.  Moreover, existing 33 

approaches rely on the spurious capture of A-rich microbial RNAs via poly(dT) primers or use a limited 34 

set of microbe-specific primers, which leads to measurement biases and a limited scope of discovery13–35 
16. 36 

 37 

Here, we address these limitations by exploring the use of enzymatic polyadenylation of microbial RNA 38 

and host RNA in situ to map the microbiome-host interface via spatial RNA-seq (Fig. 1)17. We 39 

demonstrate that enzymatic in situ polyadenylation significantly improves bacterial RNA recovery by 40 

oligo(dT) based spatial transcriptomics arrays, by up to 100-fold, and we show that this chemistry is 41 

compatible with multiple commercially available platforms for spatial RNA-seq. The enhanced recovery 42 

of bacterial RNAs enables dense spatial sampling of the microbiome at single micron resolution. In 43 

addition to bacterial RNAs, in situ polyadenylation enables capture and characterization of both A-tailed 44 

and non-A-tailed transcriptomes of host cells within the intestine. By integrating these layers of 45 

information, the resulting spatial RNA-seq method provides a highly detailed view of microbiome-host 46 
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interactions in the gut (Fig. 1). Application of this method revealed the location-dependence of the 47 

organization of the microbiome in the mouse intestine, interactions within and between microbial taxa at 48 

short length scales, local shaping of the microbiome by the host via immune and antimicrobial signaling, 49 

and changes in microbiome and host cell architectures at microbiome-tumor interfaces. 50 

 51 

 52 
Figure 1. In situ polyadenylation enables the capture of microbiome signals with sequencing-based spatial 53 

transcriptomics platforms. a. Overview of the experimental design. Array-based spatial RNA sequencing (at low 54 

or high spatial resolution) is combined with in situ polyadenylation via Poly(A) polymerase (PAP). b. Schematic of 55 

the protocol for microbiome and host Spatial Total RNA-Sequencing. The standard steps of cryosectioning, fixation, 56 

and histology are followed by enzymatic in situ enzymatic polyadenylation, total RNA capture, and sequencing 57 

library preparation. c. Example data for the low (top) and high (bottom) resolution platforms. d. Schematic of 58 

bioinformatics workflow. 59 
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 60 

 61 

RESULTS 62 

Spatial mapping of microbiome-host interaction via in situ polyadenylation 63 

We tested whether in situ polyadenylation is an effective method to enhance the recovery of microbiome-64 

derived RNA and map host-microbiome interactions, initially at low spatial resolution. We collected fresh-65 

frozen tissue from a mouse model of colorectal cancer (APC-deficient) at four distinct locations: proximal 66 

small intestine, ileum, cecum, and colon, and performed spatial transcriptomics on the Visium platform 67 

(Fig. 2a). Immediately after sectioning, we fixed the tissues with methacarn, which we found to be 68 

important for retaining fecal content in the gut sections (Methods). Following fixation, H&E staining, and 69 

imaging, we performed in situ enzymatic polyadenylation to enable the capture of non-polyadenylated 70 

molecules, including non-coding RNA and microbial RNA. To quantify the effect of enzymatic 71 

polyadenylation, we also performed conventional spatial RNA-seq, without in situ polyadenylation, on 72 

proximal tissue sections (Methods). After cDNA synthesis and sequencing, we obtained an average of 73 

156 million reads per sample (156 M ± 43 M). 74 

To quantify microbial and host-specific sequences, we initially mapped the reads to the murine (host) 75 

reference genome and then performed taxonomic classification on the unmapped reads using Kraken218 76 

(Methods). To assess potential contamination and sequence misclassification, we analyzed non-77 

intestinal tissue (murine heart). We found very low levels of microbial signal in these non-intestinal tissues 78 

(0.002-0.04 % of total reads classified as microbial, with and without the polyadenylation step, Fig. S1). 79 

We next quantified the enrichment in microbial RNA enabled by in situ polyadenylation. We found that in 80 

situ polyadenylation resulted in up to a 99-fold enrichment of bacterial RNA (Fig. 2b), with improved 81 

capture for most microbial taxa, while maintaining high capture efficiency for host genes (Fig. 2c, Fig. 82 

S2a). The enrichment of RNA from viruses and archaea was greatest in the proximal small intestine (10-83 

fold and 6-fold increase, respectively, Fig S2b-c). Notably, in situ polyadenylation enhanced detection of 84 

both lowly abundant bacterial taxa (e.g. Tannerellaceae and Eggerthellaceae families) and highly 85 

abundant taxa (e.g. Lactobacillaceae and Lachnospiraceae). In contrast, conventional spatial RNA-seq 86 

(Visium) captured a limited diversity and often failed to detect microbial RNA even in the center of the 87 

lumen (Fig. S3).  88 

In addition to microbial RNA, we found that in situ polyadenylation also improved the capture of host-89 

derived non-polyadenylated RNAs (Fig. 2d and Fig S4). For example, unspliced mRNAs were enriched 90 

after polyadenylation (15.6% of unique molecules vs 2.1%, Fig. 2d). These unspliced molecules likely 91 

represent nascent transcripts, which could provide insights into cellular responses to microbial cues and 92 

into cellular turnover and replenishment. Other biotypes were enriched, including ribosomal RNAs 93 

(rRNAs, 2.6% versus 0.16%), microRNAs (miRNAs, 0.622% vs 0.021%), small nucleolar RNAs 94 

(snoRNAs, .0683% vs 0.009%), long non-coding RNAs (lncRNAs 2.80% vs 1.42%), small nuclear RNAs 95 

(snRNAs 0.0425% vs 0.0012%), and miscellaneous RNAs (miscRNAs, 0.2557% vs. 0.001%). In situ 96 

polyadenylation enabled the identification of RNAs that are common to all four GI tract regions and murine 97 

heart tissue, including miscRNAs such as Rny1 and Rny3, the vault RNA Vaulrc5, and the snRNA Rn7sk 98 

(Fig S4c). Additionally, we observed molecules with spatially patterned expression, including the lncRNA 99 

Gm16759, which was enriched specifically in the ileum. Gm16759 has been shown to regulate Smad3 100 

expression, inhibiting the induction of intestinal regulatory T cells via the TGF-β pathway19. In the proximal 101 

intestine, we observed expression of the lncRNA Gm31992, while in the distal sections, including the 102 
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cecum and large intestine, we detected expression of other non-coding features including the lncRNAs 103 

Gm56583 and miR9-3hg, which is implicated in human cancer20,21.  104 

 105 

 106 
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Figure 2. Spatial Total RNA-Sequencing of the murine Gastrointestinal (GI) tract with the Visium platform. 107 

a. Sampling locations across the murine GI tract with and without in situ polyadenylation (Proximal small intestine 108 

(PS), Ileum (IL), Cecum (CE), and Colon (CO)). b. Barplots showing the percent (%) of Unique molecules classified 109 

as bacterial in the paired experiments with and without in situ polyadenylation. CTL = murine heart tissue included 110 

as a negative control. c. Scatter plot showing the Genera total Counts per million UMI +1(left) and the Host Genes 111 

total Counts per million UMI +1(right) for the paired Visium experiment on Colon with and without in situ 112 

polyadenylation. d. Boxplots showing the RNA molecules percentage distribution per spot for the paired 113 

experiments collected from the four different parts of the GI. The shown RNA types include (from left to right) 114 

mRNA%, rRNA, Unspliced RNA% and miRNA% e. Spatial maps for the 4 profiled GI locations with Visium + in situ 115 

polyadenylation. The tissue portion is colored based on deconvolution results, where each spot is assigned to the 116 

most abundant cell type, legend shown at the bottom. The lumen portion of the plot shows ln(Microbial Counts +1) 117 

in the top plot and the richness at the genus level at the bottom plot. f. Boxplot showing the richness per spot for 118 

the four GI locations profiled with Visium + in situ polyadenylation (left) and stacked barplot showing the relative 119 

abundance of the same samples at the family level (right), legend shown at the bottom. g. Relative abundance 120 

changes along the transverse axis (from tissue to lumen) at the phylum level for four GI locations, profiled using 121 

Visium and in situ polyadenylation. Dot plots for each location display the relative abundance of four major phyla, 122 

divided into 5 spot-distance bins from the tissue. Dot size represents the relative abundance percentage, while the 123 

color indicates the relative abundance z-score across bins. H. Spatial maps showing the capture of select non-124 

coding RNAs and bacterial families between close cross-sections processed with the standard Visium (left) Visium 125 

with in situ polyadenylation (right). 126 

 127 

We next examined microbiome composition as a function of location within the gastrointestinal (GI) tract. 128 

Moving down the GI tract from the proximal small intestine and ileum to the cecum and colon, we 129 

observed an increase in taxonomic richness per spot (average of 14.1 genera in the small intestine to 130 

114.4 in the large intestine, lumen) (Fig. 2e). Lactobacillaceae and Muribaculaceae were abundant in the 131 

proximal small intestine (PS) and ileum (IL), but not in the cecum (CE) and colon (CO). Lachnospiraceae 132 

and Clostridiaceae had the greatest abundance in the cecum while Oscillospiraceae had the highest 133 

abundance in the colon. Last, Flavobacteriaceae, Eggerthellaceae, Barnesiellaceae, Prevotellaceae, and 134 

Tannerellaceae had higher relative abundances in the small intestine (Fig. 2f). These results are in line 135 

with the previous findings22.  136 

A major advance of the method is its ability to examine changes not only along the longitudinal axis but 137 

also along the transverse axis of the GI tract, from the tissue to the lumen, where variations in micro-138 

niches—such as pH, oxygen levels, nutrient accessibility, and contact with the host's defense 139 

mechanisms—are expected to influence microbial composition22. In the small intestine, we observed that 140 

the microbial signal originates near the center of the lumen, where it also becomes more diverse. In 141 

contrast, in the cecum and large intestine, we observed a strong microbial signal and increased diversity 142 

near the mucosa. The limited resolution of the Visium platform used in this experiment, however, did not 143 

permit to fully resolve the mucosal layer or the interface between the lumen and mucosa (Fig. 2e). To 144 

further assess changes in microbiome composition along the transverse axis, we divided each map into 145 

five bins based on distance to the lumen. We then measured the relative abundance in each bin for four 146 

representative phyla: Actinomycetota, Pseudomonadota, Bacteroidota, and Bacillota (Fig. 2g). Doing so, 147 

we found that Actinomycetota and Pseudomonadota were generally more abundant near the mucosa 148 

and tissue layer, particularly in the small intestine. Bacteroidota, the most abundant phyla in the small 149 

intestine, were preferentially present away from the tissue and mucosa. Conversely, Bacillota were the 150 

dominant phyla in the cecum and large intestine across all bins, with higher levels observed away from 151 

the tissue, while Bacteroidota were enriched in the tissue layer (Fig S4d). These results demonstrate the 152 
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effectiveness of in situ polyadenylation for spatially mapping microbiome-host interactions, enriching the 153 

capture of non-host and non-coding molecules (Fig. 2h), and inspire experimentation at higher spatial 154 

resolution. 155 

 156 

Mapping microbiome-host interaction at higher spatial resolution 157 

We next implemented in situ polyadenylation on a high-resolution spatial sequencing platform 158 

(StereoSeq, STOmics), which yielded maps of host and microbiome at 0.5 µm resolution (Fig. 1a). This 159 

method was performed on tissue sections adjacent to those profiled by Visium. Following the same 160 

analysis workflow (Methods) as for the low-resolution platform, we mapped host coding and non-coding 161 

gene expression, along with microbiome RNA including bacterial rRNA and mRNA. We found that in situ 162 

polyadenylation again improved the capture of non-coding RNAs and microbes (Fig. S5). We confirmed 163 

that the measurements performed at low resolution (Visium) and high resolution (StereoSeq) for both 164 

host and microbial RNA were in good agreement at the bulk level (Fig. S6).  165 

 166 

In a section of mouse ileum, we recovered a total of 4.8 million host RNAs (3.77 host UMIs per µm2 in 167 

the tissue) representing 28,391 genes, and 10 million microbial RNAs (9.19 molecules per µm2 in the 168 

lumen) representing 81 species with >0.01% abundance (Fig. S7). To create a detailed map at the cell 169 

level of the host tissue, we used paired imaging data to assign host RNAs to individual cells. We then 170 

predicted cell types via computational deconvolution using single-cell RNA-seq data from the same 171 

mouse model as a reference23,24. Finally, we combined the host map with the microbial signal at 0.5 µm 172 

resolution to generate a highly detailed view of the host-microbiome interface (Fig. 3a). 173 

  174 

We observed distinct zonation patterns of coding and non-coding host gene expression. Host gene 175 

expression was spatially non-uniform, with significantly higher levels and diversity of gene expression 176 

observed at the tips of the villi, likely due to the increased transcriptional activity of mature enterocytes 177 

(Fig. 3b, Fig. S8). Unspliced mRNAs accounted for 22.5% of the total host RNA in the tissue, with a 178 

higher proportion observed at the bases of the crypts, possibly associated with the turnover of transit 179 

amplifying (TA) cells (Fig. 3a, Fig. S8b). Genes with a high proportion of unspliced molecules included 180 

Cdk8 (Cyclin-dependent kinase 8), a transcription regulatory protein and oncogene associated with 181 

human colorectal cancer (Fig 3c). These observations are in line with previous studies which have shown 182 

that Apc-deficient CRC cells dysregulate RNA splicing machinery25. In situ polyadenylation improved the 183 

capture of non-coding genes in comparison to conventional STomics protocol (Fig. S5c). Non-coding 184 

RNA expression was elevated in the zone closer to the gut wall. Some non-coding genes showed cell-185 

type specific expression, such as Hnf1aos1 (Fig. S9). We detected several landmark genes, including 186 

the non-coding gene 6230400D17RiK, which was enriched closer to the gut wall, and Ada, which was 187 

found at the tips of the villi (Fig. 3d). Finally, we identified transcripts of genes that are known to be 188 

involved in host response to the microbiome, such as the lysozyme encoding gene Lyz1 and other 189 

antimicrobial peptides including defensins expressed by Paneth cells at the base of crypts, as well as 190 

Igha, which encodes a segment of the IgA heavy chain, expressed by plasma blasts in the lamina propria 191 

(Fig. 3e). 192 

 193 
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Figure 3. High-resolution spatial mapping of host total gene expression and the microbiome. a. Spatial 195 

mapping of host gene expression and microbiome composition (spots with more than 1 microbial RNA detected are 196 

shown). b. Spatial mapping of host UMIs, gene richness, unspliced molecule and non-coding gene ratio (20 µm 197 

square bins), c.  Plot of spliced and unspliced molecules for each coding gene (outliers in black, points with distance 198 

from y=x greater than five standard deviations). d. Heatmap of the expression of selected genes along the distance 199 

from the out-tissue edge. e. Spatial gene expression of select genes (20 µm2 bins). f. Maps of measured unique 200 

bacterial molecules (UMI) and genus richness (20 µm2 bins). g. Spatial maps of abundance of specific genera (20 201 

µm2 bins). Spots with more than 1 microbial count are shown. h. Z-scored Ripley’s H score. i. Zoom-in of abundance 202 

of Lactobacillus. j. Example of spatially correlated genera.  k. Spatial mapping of bacterial gene function.  l. Species 203 

accumulation curve for bacterial genera in the ecosystem of the gut. 204 

 205 

The density and diversity of bacteria captured micro-scale ecological features of the lumen. We found 206 

that bacterial RNA transcripts were non-uniformly distributed inside the lumen (Fig. 3f).  We identified 207 

fewer bacteria near the boundary with the host, and the bacterial diversity measured at the genus level 208 

was also lower close to the boundary with the host. Clostridium was evenly distributed in the tract with 209 

the exception of one large cluster in the lumen. Klebsiella was abundant near the tip of the villi, and 210 

Eggerthella was abundant away from the host tissue (Fig. 3g). We observed colony-like local 211 

accumulations for several genera: 54 genera showed significant autocorrelation (moran’s I p-values < 212 

0.05, major genera with >0.01% total bacterial counts) in line with colony-formation (Fig. S10). For these 213 

genera, we calculated Ripley’s H to infer cluster size (Fig. 3h). Some genera including Lactobacillus 214 

showed small colony size (radius < 10 µm, Fig. 3i), while other genera including Turicimonas had 215 

medium-sizes colonies (~ 10 µm), and taxa including Clostridium formed bigger colonies (> 30 µm). 216 

Analysis of spatial correlation between colony-forming genera revealed strong correlations between 217 

bacterial genera, including between Turicimonas and Sutterella (Fig. 3j). The size of bacterial colonies 218 

may be influenced by factors such as bacterial reproductive capacity, the abundance of available 219 

resources, and the level of intertaxa competition. Further investigation is needed to elucidate how these 220 

colonies form over a few hours of passage through the small intestine and how they contribute to 221 

microbial community structure.  222 

We aligned bacterial reads to the full rRNA operon database26, and estimated that 49.1 % of bacterial 223 

reads are non-ribosomal. We annotated these non-ribosomal reads to bacterial genes predicted from 224 

assembled bulk metagenomic data measured on sister sections (Methods). 3.7% of these reads were 225 

annotated to metagenomic genes including TufA gene (Translation elongation factor EF-Tu, a GTPase, 226 

Fig. 3k). EF-Tu catalyzes the binding of aminoacyl-tRNAs to the ribosome during translation. It is one of 227 

the most abundant and highly conserved bacterial proteins, and indeed was observed to be widely 228 

expressed within the lumen.  229 

 230 

We measured the relationship between habitat area size and the number of unique species identified in 231 

the ecosystem of the mouse gut (Fig. 3l). The relationship between the number of unique genera 232 

observed and the area sampled followed a power law over three orders of magnitude (16 µm2 - 0.16 233 

mm2), in line with observations of species-area relationships in a wide range of systems, including plant 234 

and animal ecosystems. The observed power exponent of 0.48 (genus level) indicated relatively high 235 

spatial dispersion for the microbiome in the ileum of mice relative to exponents reported for plant, animal 236 

and environmental microbial ecosystems27. 237 

 238 
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 239 
Figure 4. High-resolution spatial mapping of a tumor-microbiome interface. a. Spatial mapping of host gene 240 

expression and microbiome in an ileum section with tumor (ApcMin/+ mouse, spots with more than 1 microbial 241 

count shown). Color legend is the same as in Figure 3a. b. Probability density plot of host and microbial cells as 242 

function of distance to the host-microbiome boundary, for normal (top) and tumor (bottom) tissue. c. Genera 243 

abundance as function of distance to the host-microbiome boundary for normal (green) and tumor (pink) tissue. d. 244 

Violin plot of cell density as function of distance from the outer tissue edge. The distances of each cell type in the 245 

tumor were linearly rescaled to match the location of mature enterocytes in a section without tumor.  246 

 247 

Microbes are an inherent part of the microenvironment of cancers that develop at epithelial barrier 248 

surfaces28. To study the spatial organization of host cells and gut microbes associated with tumors, we 249 

assayed a section of ileum tissue with notable tumors. We compared the microbiome at the edges of 250 

tumor and normal tissue (Fig. 4a, Fig. S11). To this end, we first defined the boundary between host and 251 

microbiome based on microscopy images (Fig. S12), and then measured the spatial organization of host 252 

cell types and key taxa as a function of distance to this boundary. This analysis showed that in normal 253 

tissue, microbes are most dense 100-200 µm from the host villi (Fig. 4b, top), whereas in the tumor 254 

tissue, microbes are most dense directly at the boundary with the tumor (Fig. 4b, bottom). Clostridium, 255 

the most abundant genus, and Lactobacillus and Parabacteroides, were closely associated with the 256 

tumor edge (Fig. 4c), whereas for normal tissue, these taxa were found away from the tissue boundary 257 

towards the lumen. Both Lactobacillus and Turicimonas again showed evidence of colony formation 258 

(radius 10-20 μm, Fig. S13). In normal tissue, mature enterocytes were located closest to the host-259 

microbe boundary, followed by immature enterocytes and other intestinal epithelial cells. Paneth cells 260 

were located at the basal region, in line with the known architecture of ileum tissue. In contrast, tumor-261 

associated TA cells, and immune cells including dendritic cells, macrophages, and CD8 T cells were 262 

enriched in the tumor (Fig. 4d, Fig. S14a). At the gene level, expression of some genes moved more 263 

toward the lumen in the tumor subregion, including cancer-related genes such as FMNL2 (Fig. S14b). 264 

Mucin-producing goblet cells were located away from the tissue-microbiome boundary due to the 265 

presence of the tumor mass, and consequently, the protective barrier of mucin may not be functioning 266 

on the tumor surface. This change in host architecture likely explains the dramatic change in local 267 

microbiome composition along the edge of the tumor. Collectively, these data and analysis demonstrate 268 

the possibility to map microbe-microbe and microbe-host interactions at high resolution using in situ 269 

polyadenylation combined with spatial RNA sequencing.  270 
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 271 

DISCUSSION 272 

Characterizing the spatial organization of microbes in the gut is crucial for understanding the inter-273 

microbial and host-microbial interactions that govern the organ-like function of the gut microbiome. Yet, 274 

current methods for mapping the gut microbiome have significant limitations. In this study, we show that 275 

combining in situ polyadenylation with spatial RNA-seq effectively maps the biogeography of the gut 276 

microbiome and the host A-tailed and non-A-tailed transcriptomes. By integrating a simple enzymatic 277 

step with commercially available spatial transcriptomics platforms, this method provides an accessible 278 

and scalable way to measure the host-microbe interactome across spatial scales.  279 

 280 

We applied this methodology to profile intestinal tissue in a mouse model of intestinal neoplasia.  We first 281 

demonstrated this method at low spatial resolution and characterized changes in microbiome composition 282 

as a function of longitudinal and transverse location in the mouse intestine, which corroborated many 283 

previously known features of the organization of the gut microbiome in mice. The enhanced recovery of 284 

microbial RNA enabled by in situ polyadenylation then allowed high-resolution, 0.5 μm spatial sampling 285 

of the microbiome and host total RNA expression. This high-resolution analysis revealed interactions 286 

within and between microbial taxa by enabling the measurement of spatial heterogeneity and colony 287 

formation, even for colonies less than 10 μm in radius. Colony formation may indicate active growth, and 288 

if so, colony size may be a proxy for growth rate, especially in the colon where mixing is reduced. It is 289 

also possible that bacterial colonies in the gut are formed via precipitation mediated by IgA produced by 290 

plasmablasts in the host tissue. It will therefore be of interest to cross-analyze the IgA immune repertoire 291 

and local microbiome clustering in future studies. We also observed mechanisms by which the host tissue 292 

architecture changes local microbiome composition. At the boundary between the microbiome and 293 

tumors, we observed a pronounced shift of key microbial taxa towards the boundary with the host, 294 

suggesting increased (generalized) host-microbe interactions. These changes in local microbiome 295 

structure are likely explained by the altered local host architecture, with mucin-producing cells dislocated 296 

from the tissue boundary.  297 

 298 

Importantly, as we have shown previously, in situ polyadenylation enabled mapping of both the A-tailed 299 

and non-A-tailed host transcriptome. Analysis of the “total” transcriptome revealed spatially restricted 300 

expression of several classes of noncoding RNAs, reflecting the architecture of intestinal tissue. We 301 

identified landmark coding and non-coding molecules along the crypt-villus axis, with increased 302 

expression in mature enterocytes at the villus lining and a higher fraction of unspliced, newly transcribed 303 

RNA near the crypt. These patterns point to the potential of using this assay to study intestinal stem cell 304 

differentiation dynamics. 305 

 306 

While this study lays the groundwork for consideration of spatial structure in microbiome research, there 307 

are limitations that need to be addressed. First, the high cost of commercial spatial transcriptomics 308 

platforms remains significant, hindering broader adoption and use of these techniques in drug screening 309 

applications. Second, long-read sequencing could enhance taxonomic classification beyond what is 310 

possible with short-read sequencing alone, and may enable further analyses, for example spatial profiling 311 

of the gut immune repertoire. Last, making the methodology compatible with formalin-fixed paraffin-312 

embedded tissue would open application of these techniques in pathology29. Despite these limitations, 313 

this study shows that spatial transcriptomics provides a unique window into microbiome ecology and 314 

intermicrobial and host-microbial interaction. Going forward, spatial transcriptomics will be a powerful 315 

approach to explore questions in gut immunology30,31, to explore microbial colonization of mucus and 316 
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intestinal tissue, to study microbiomes in small niches such as crypts, and to investigate the concept of 317 

the cancer-associated microbiome. Spatial transcriptomics can further be applied to explore the role of 318 

specific taxa in diseases with known microbiome involvement, such as inflammatory bowel disease and 319 

other autoimmune disorders. Ultimately, spatial transcriptomics addresses an unmet need by enabling 320 

simultaneous in situ profiling of both host and microbiome at high resolution, allowing for the survey of 321 

structural relationships from the macroscale to the microscale. 322 

 323 

 324 

 325 

METHODS 326 

Animal Models and Experimental Procedures 327 

All animal protocols were approved by the Cornell University Institutional Animal Care and Use 328 

Committee (IACUC), and experiments were performed in compliance with institutional guidelines. 329 

C57BL/6-ApcMin/+/J mice were used for the spatial transcriptomics experiments. All mice (C57BL/6-330 

ApcMin/+/J and C57BL/6-Wild type) were maintained at the barrier mouse facility at Weill Hall of Cornell 331 

University. ApcMin/+ and wild-type mice were initially ordered from Jackson Laboratory and then bred in 332 

the barrier facility. The ApcMin/+ mice used in these experiments have a chemically induced transversion 333 

point mutation at nucleotide 2549, resulting in a stop codon at codon 850, truncating the APC protein. 334 

 335 

Both male and female mice were used, and their precise age was noted. Experimental and breeding mice 336 

were provided with ad libitum access to autoclaved water and rodent chow (autoclavable Teklad global 337 

14% protein rodent maintenance diet #2014-S; Envigo). The overall health, food intake, and weight of 338 

the mice were closely monitored to ensure that tumor burden did not violate ethical standards. After 339 

approximately 100 days, the mice were sacrificed using 5 minutes of CO2 asphyxiation followed by tissue 340 

collection. The intestines from the mice were inspected for tumor localization, and excess fat was 341 

removed. The intestines were then cut into individual sections, embedded in cryomolds with O.C.T 342 

Compound (Tissue-Tek), and frozen in an isopentane-liquid nitrogen as described previously11. 343 

Specifically, the small intestine was cut into 4-6 approximately equal-sized segments, the large intestine 344 

into 2-3 segments, and the cecum was processed separately.  345 

 346 

In situ polyadenylation for the gastrointestinal tract profiling with the Visium platform 347 

Cryosections were obtained from four distinct locations of the intestine of the same individual (male, 13w) 348 

— the proximal small intestine, ileum, cecum, and large intestine. Sections were processed using either 349 

a modified protocol or the standard Visium protocol. For the modified protocol, 10 µm thick tissue sections 350 

were mounted onto Visium Spatial Gene Expression v1 slides. The sections were fixed in freshly 351 

prepared methacarn solution (60% methanol, 30% glacial acetic acid, 10% chloroform) at room 352 

temperature for 15 minutes. H&E staining was performed according to the Visium protocol, and tissue 353 

sections were imaged using a Zeiss Axio Observer Z1 microscope equipped with a Zeiss Axiocam 305 354 

color camera. The resulting H&E images were corrected for shading, stitched, rotated, thresholded, and 355 

exported as TIFF files using Zen 3.1 software (Blue edition). After imaging, the slides were transferred 356 

into the Visium Slide Cassette. 357 

 358 

In situ polyadenylation was conducted using yeast Poly(A) Polymerase (yPAP; Thermo Scientific, Cat 359 

#74225Z25KU). Each capture area was equilibrated by adding 100 µl of 1X yPAP Reaction buffer (20 µl 360 

5X yPAP Reaction Buffer, 2 µl 40U/µl Protector RNase Inhibitor, 78 µl nuclease-free H2O), incubating at 361 

room temperature for 30 seconds, and then removing the buffer. Following this, 75 µl of yPAP enzyme 362 
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mix (15 µl 5X yPAP Reaction Buffer, 3 µl 600U/µl yPAP enzyme, 1.5 µl 25 mM ATP, 5 µl Murine RNase 363 

Inhibitor, 50.5 µl nuclease-free H2O) was added to each reaction chamber. The chambers were sealed 364 

and incubated at 37°C for 25 minutes, after which the enzyme mix was removed. Post-polyadenylation, 365 

a 30-minute enzymatic permeabilization step was performed, followed by the standard Visium library 366 

preparation protocol to generate cDNA and final sequencing libraries. For the standard Visium 367 

experiment, H&E staining and imaging were immediately followed by permeabilization and the standard 368 

library preparation. 369 

 370 

In situ polyadenylation with the STOmics platform  371 

Adjacent ileal cross-sections to those profiled with Visium were also profiled using either the modified or 372 

standard STomics protocol. 10 µm thick sections were placed onto STOmics mini chips (Product No. 373 

211ST004). For the modified protocol, sections were fixed in methacarn for 15 minutes as previously 374 

described, followed by a DNA staining step according to the STOmics protocol. Imaging was performed 375 

on a Zeiss Axio Observer Z1 Microscope using a Hamamatsu ORCA Fusion Gen III Scientific CMOS 376 

camera. Images were stitched, rotated, thresholded, processed, and exported as TIFF files using Zen 377 

v.3.1 software (Blue edition), and then registered using the STOmics software. After imaging, in situ 378 

polyadenylation was performed followed by 12 minute permeabilization and library preparation according 379 

to the STOmics protocol. For the standard experiment, imaging is directly followed by permeabilization. 380 

Additionally, ileal cross-sections from a second mouse (female, 17w), containing a tumor adjacent to the 381 

luminal cavity, were processed exclusively using the modified protocol. 382 

Sequencing of the spatial transcriptomics libraries.  383 

Sequencing of the Visium libraries was performed on a NextSeq 2K (Illumina) platform using a P3 200bp 384 

kit, with reads allocated as follows: 28 bp for read 1, 10 bp for index 1, 10 bp for index 2, and 190 bp for 385 

read 2. For the libraries prepared using the STOmics platform, sequencing was carried out on a Complete 386 

Genomics DNBSEQ-T7 Sequencer using the DNBSEQ-T7 High-throughput Sequencing Set (FCL 387 

PE100) and the associated STEROmics primer set. The sequencing run consisted of a 50 bp read 1 (with 388 

dark cycles from bases 26 to 40), a 100 bp read 2, and a 10 bp index read. 389 

Preprocessing and alignment of spatial transcriptomics data 390 

To ensure similar alignment and quantification across platforms and methodologies we used the 391 

“slide_snake” pipeline that utilizes Snakemake32 (6.1.0), which can be found on github 392 

(https://github.com/mckellardw/slide_snake). For the Visium and STRS (Visium) libraries, the pipeline 393 

first trims poly(A) and poly(G) sequences, as well as primer sequences using cutadapt33. The reads were 394 

aligned using STAR v2.7.10a34 and STARSolo35 (specified parameters: --outFilterMultimapNmax 50, --395 

soloMultiMappers EM, --clipAdapterType CellRanger4) to generate expression matrices for every 396 

sample. For downstream analyses the GeneFull matrices were used. Barcode whitelists and the 397 

associated spot spatial locations for Visium data were copied from the Space Ranger software (“Visium-398 

v1_coordinates.txt”). For the StereoSeq and STRS  (StereoSeq) libraries, barcode maps were provided 399 

by the manufacturer as .h5 files and converted to text format using ST_BarcodeMap 400 

(https://github.com/STOmics/ST_BarcodeMap). Alignment references were generated from the 401 

GRCm39 reference sequence using GENCODE M32 annotations.  402 

 403 

Unmapped reads classification and construction of microbiome Anndata objects 404 

In this study, to classify reads of microbial origin out of the unmapped reads we utilized Kraken2 (version 405 

2.09)18. We used the standard Kraken2 database supplemented with the mouse genome. Unmapped 406 

reads flagged in the BAM file were processed to retain the correct cell barcode and unique molecular 407 
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identifier (UMI) information as identified by STARsolo. This allowed for the demultiplexing of Kraken2 408 

output by cell barcode and UMI. For data integration, we employed Pandas, Scanpy, NumPy, Scipy, and 409 

regular expressions to create an AnnData object with cell barcodes as observations and NCBI taxonomy 410 

IDs as features. Only classified reads were retained for subsequent analysis. 411 

 412 

Sterile control pre-processing and identification of taxa to filter 413 

To assess the Kraken2 classified microbial counts occurring in non-intestinal tissues for the low-414 

resolution platform we re-aligned previously published Visium and STRS libraries of mock-infected 415 

C57BL/6J 11 days year old mice with and without polyadenylation as described in the corresponding 416 

studies11,17. 85 taxa occurring at 1ppm (UMI) or greater were excluded from downstream analysis as 417 

potential misclassification. For the Stereoseq libraries, a sterile control experiment was conducted. 418 

Briefly, fresh-frozen heart from a eleven day old mouse were sectioned on a Stereo-seq 1cm x 1cm tile 419 

(STOmics, BGI). The sample was fixed in methanol at -20°C for 20 minutes followed by the in situ 420 

polyadenylation and the STomics library preparation protocol as described above. Taxa occurring at 421 

frequencies higher than 1 ppm UMI were excluded from downstream analyses.  422 

 423 

Pre-processing of the Visium and STRS data 424 

Spatial coordinates were assigned to the Visium and STRS library spots based on the barcode map 425 

provided by the Space Ranger software (“Visium-v1_coordinates.txt”). The accompanying hematoxylin 426 

and eosin histology images of each experiment were used to manually mark the spots that correspond 427 

to tissue and lumen. Scanpy36, mudata37,38, and muon37 were used to construct multimodal objects 428 

separately for the microbial maps (in the taxonomic levels of phylum, family, genus, and species). This 429 

was done for each one of the accounted microbial superkingdoms of Archaea, Bacteria and Viruses. For 430 

downstream analyses, only the spots covered by tissue or corresponding to lumen were accounted for.  431 

 432 

Microbial percentage and enrichment calculation for the paired Visium STRS experiments 433 

For the three discussed superkingdoms, the percentage of reads falling under to a superkingdom 434 

classification was calculated as the percentage of Kraken-classified reads that belong to the 435 

superkingdom over the total counts of the library defined as the sum of unique molecules aligned to the 436 

host and unique molecules classified by Kraken2. The enrichment for each paired experiment was 437 

defined as the ratio of those percentages.  438 

 439 

Relative abundance and bacterial richness calculations for the low-resolution datasets 440 

To calculate the relative abundance for each examined sample, at family level, the corresponding family 441 

reads were collapsed and divided by the total molecules originating from bacteria as classified by 442 

Kraken2. The microbial richness per spot was calculated as the number of unique taxa occurring per spot 443 

after the exclusion of taxa accounting for 0.01% or less of microbial molecules in the whole sample. For 444 

the transverse axis relative abundance analysis, cells were spatially binned from the tissue to the lumen 445 

based on their minimum distance to the lumen-associated region. Phyla relative abundance data were 446 

then aggregated within each bin to quantify relative abundances across the tissue-lumen axis. 447 

 448 

Cell type deconvolution  449 

We employed the cell2location24 model (version 0.1.3) to deconvolve spatial transcriptomics data for the 450 

experiments conducted with both Visium and StereoSeq technologies. The scRNA-seq reference, 451 

derived from a previous study on Apc Min/+ mice23 was filtered to include only genes that are highly 452 

expressed and informative for identifying rare cell types, with thresholds set at cell_count_cutoff = 5, 453 
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cell_percent_cutoff = 0.01, and nonz_mean_cutoff = 1.12. Cell-type-specific expression signatures were 454 

generated using negative binomial regression from these selected genes. These signatures were applied 455 

to the spatial transcriptomics data to determine cell-type identities, with the highest prediction scores 456 

used for assignment. For Visium, we set N_cells_per_location to 30, and for StereoSeq, we set it to 1, 457 

with the detection_alpha parameter set to 20 in both cases. 458 

 459 

Bacterial gene function analysis 460 

Considering the low annotation efficiency of the functional composition of the mouse metagenome, we 461 

used genes identified from the metagenome data obtained from the same sample as a reference. We 462 

predicted the genes from contigs of metagenomic data from the same sample using prodigal39 (v2.6.3) 463 

and then clustered them with CD-HIT40 (v4.6.4) to create a gene reference. The genes in the created 464 

gene database were annotated with EGGNOG database (v5.0) using DIAMOND41 (v2.0.13) with e-value 465 

<1e-5. Meanwhile, in the previous section, reads annotated as Bacteria by Kraken2 were further mapped 466 

to the full-length rRNA operon database using BLASTn (identity >80, coverage >60). Unmapped reads 467 

were then mapped to the gene database created from the metagenomic data for gene annotation. 468 

 469 

Spatial autocorrelation analysis 470 

Moran's I was calculated for the major genera (abundance > 0.01%) using the Moran function from the 471 

Python library pysal. Spatial weights were generated using the 𝑘-nearest neighbors (KNN) matrix (𝑘=4) 472 

from the weights module in pysal. For genera with a Moran's I p-value < 0.05, Ripley's H was 473 

subsequently derived using the following formula: 474 

𝐾(𝑟) =
2𝐴

𝑁(𝑁 − 1)
∑ ∑ 𝐼(𝑑𝑖𝑗 ≤ 𝑟)

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

 475 

𝐿(𝑟)  = √
𝐾(𝑟)

𝜋
  476 

𝐻(𝑟)  =  𝐿(𝑟) − 𝑟 477 

where 𝑑𝑖𝑗 is the Euclidean distance between points i and j. 𝐼(𝑑𝑖𝑗 ≤ 𝑟)is an indicator function that is 1 if 478 

the distance 𝑑𝑖𝑗 is less than or equal to 𝑟, and 0 otherwise. 𝐴 is the area of the observation window. 𝑁 is 479 

the number of points in the dataset. 480 

 481 

Boundary detection 482 

The microscope data was saved in grayscale and then averaged using the OpenCV blur function with a 483 

kernel size 100 µm. After that, the data was binarized with a threshold of 80 for normal tissue and 100 484 

for cancer tissue. Finally, boundaries were extracted using the OpenCV findContours function. 485 

 486 

 487 

 488 

DATA AVAILABILITY 489 

Data will be made available upon publication under GEO accession numbers; GSE276866 for the low-490 

resolution datasets, GSE277196 and GSE277197 for the high-resolution datasets. 491 

 492 

CODE AVAILABILITY 493 

Code associated with this work can be found at https://github.com/ntekasi/microSTRS 494 

 495 
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